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Introduction and motivation

Symmetry is very important to understand any physical
model and often it paves the way for solving the equations
involved.

Classical concept: Symmetry given by group actions.

Generalization : groups replaced by quantum groups.

So, it is natural to conceive of ‘universal quantum
symmetry’, or ‘quantum automorphism group’ of some
mathematical structure.

Manin formulated in purely Hopf algebraic terms.

Motvated by Connes, S. Wang came up with a version in
the world of C ∗ algebraic (compact) quantum group.

My own motivation: extend the philosophy of quantum
automorphism to geometry, both commutative and
noncommutative, by formulating the notion of quantum
isometry.
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Quick review of basic concepts

Definition

a compact quantum group (CQG for short) a la Woronowicz
is a pair (A,∆) where A is a unital C ∗-algebra, ∆ is a
coassociative comultiplication, i.e. a unital C ∗-homomorphism
from A to A⊗A (minimal tensor product) satisfying
(∆⊗ id) ◦∆ = (id⊗∆) ◦∆, and linear span of each of the
sets {(b ⊗ 1)∆(c) : b, c ∈ A} and {(1⊗ b)∆(c) : b, c ∈ A} is
dense in A⊗A

There is a natural generalisation of group action on spaces in
this noncommutative set-up, which is given below :

Definition

We say that a CQG (A,∆) acts on a (unital) C ∗-algebra C if
there is a unital ∗-homomorphism α : C → C ⊗A such that
(α⊗ id) ◦α = (id⊗∆) ◦α, and the linear span of α(C)(1⊗A)
is norm-dense in C ⊗ A.
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Noncommutative geometry a la Connes

Definition

A spectral triple or spectral data is a tuple (A,H,D) where
H is a separable Hilbert space, A is a ∗-subalgebra of B(H)
(not necessarily norm-closed) and D is a self-adjoint (typically
unbounded) operator such that for each a ∈ A, the operator
[D, a] admits bounded extension. Such a spectral triple is also
called an odd spectral triple. If in addition, we have γ ∈ B(H)
satisfying γ = γ∗ = γ−1, Dγ = −γD and [a, γ] = 0 for all
a ∈ A, then we say that the quadruplet (A,H,D, γ) is an even
spectral triple or even spectral data. The operator D is
called the Dirac operator corresponding to the spectral triple.
We say that the spectral triple is of compact type if D has
compact resolvents. It is Θ-summable if Tr(e−tD

2
) <∞ for

t > 0.
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Background

Early work : formulation of quantum automorphism and
quantum permutation groups by Wang, and follow-up
work by Banica, Bichon and others.

Basic principle: For some given mathematical structure
(e.g., a finite set, a graph, a C ∗ or von Neumann algebra)
identify (if possible) the group of automorphisms of the
structure as a universal object in a suitable category, and
then, try to look for the universal object in a similar but
bigger category by replacing groups by quantum groups of
appropriate type.

However, most of the earlier work done concerned some
kind of quantum automorphism groups of a ‘finite’
structure. So, one should extend these to the
‘continuous’/ ‘geometric’ set-up. This motivated my
definition of quantum isometry group in [3].
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Wang’s quantum permutation and quantum
automorphism groups

Quantum permutation group (Wang):
Let X = {1, 2, ..., n}, G group of permutations of X . G can be
identified as the universal object in the category of groups
acting on X . For a simiar (bigger) category of compact
quantum groups acting on C (X ), Wang obtained the following
universal object:

Q := C ∗

qij , i , j = 1, ..., n; | qij = q∗ij = q2
ij ,
∑
i

qij = 1 =
∑
j

qij

 .

The co product is given by ∆(qij) =
∑

k qik ⊗ qkj , and the
action on C (X ) is given by α(χi ) =

∑
j χj ⊗ qji .

This CQG is naturally called ‘quantum permutation group’ of n
objects.
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However, the cateogory of CQG acting on Mn does NOT have
a universal object!
Remedy (due to Wang): consider the subcategory of actions
which preserves a given faithful state.
More precisely: For an n × n positive invertible matrix
Q = (Qij), let Au(Q) be the universal C ∗-algebra generated by
{ukj , k , j = 1, ..., di} such that u := ((ukj)) satisfies

uu∗ = In = u∗u, u′QuQ−1 = In = QuQ−1u′.

Here u′ = ((uji )) and u = ((u∗ij)). Coproduct given by
∆(uij) =

∑
k uik ⊗ ukj .

Proposition

Au(Q) is the universal object in the category of CQG which
admit a unitary representation, say U, on the finite dimensional
Hilbert space Cn such that adU preserves the functional
Mn 3 x 7→ Tr(QTx).
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Quantum isometry in terms of ‘Laplacian’
(Goswami 2009)

Classical ismoetries: the group of Riemannian isometries
of a compact Riemannian manifold M is the universal
object in the category of all compact metrizable groups
acting on M, with smooth and isometric action.

Moreover, a smooth map γ on M is a Riemannian
isometry if and only if the induced map f 7→ f ◦ γ on
C∞(M) commutes with the Laplacian −d∗d .

Under reasonable regularity conditions on a (compact type,
Θ-summable) spectral triple (A∞,H,D), one has analogues of
Hilbert space of forms HD

i , say, i = 0, 1, .... The map
d(a) := [D, a] then extends to a (closable, densely defined)
map from HD

0 (space of 0-forms) to HD
1 (space of one-forms).

The self-adjoint negative map −d∗d is the noncommutative
analogue of Laplacian L ≡ LD , and we additionally assume
that
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(a) L maps A∞ into itself;
(b) L has compact resolvents and its eigenvectors belong to
A∞, forming a norm-total subset of A;
(c) the kernel of L is one dimensional (“connectedness”). It is
then natural to call an action α of some CQG Q on the
C ∗-completion of A∞ to be smooth and isometric if for every
bounded linear functional φ on Q, one has (id⊗ φ) ◦ α maps
A∞ into itself and commutes with L.

Theorem

Under assumptions (a)-(c), there exists a universal object
(denoted by QISOL) in the category of CQG acting smoothly
and isometrically on the given spectral triple.

The assumption (c) can be relaxed for classical spectral
triples and their Rieffel-deformations.
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Quantum isometry in terms of the Dirac operator
(Bhowmick-Goswami 2009 )

From the NCG perspective, it is more appropriate to have
a formulation in terms of the Dirac operator directly.
Classical fact: an action by a compact group G on a
Riemannian spin manifold is an orientation-preserving
isometry if and only if lifts to a unitary representation of a
2-covering group of G on the Hilbert space of square
integrable spinors which commutes with the Dirac
operator.

For a spectral triple (A∞,H,D) of compact type, it is thus
reasonable to consider a category Q′ of CQG (Q,∆) having
unitary (co-) representation, say U, on H, (i.e. U is a unitary
in M(K(H)⊗Q) such that (id⊗∆)(U) = U12U13) which
commutes with D ⊗ 1Q, and for every bounded functional φ on
Q, (id⊗ φ) ◦ adU maps A∞ into its weak closure. Objects of
this category will be called ‘orientation preserving quantum
isometries’.



D.Goswami

Introduction

Some basics

Background
and
motivation

Definition and
existence in
various set-ups

Tools for
computing
QISO

No genuine
QISO for
connected
classical
manifolds

Concrete
computations

Sketch of
proof of
existence of
QISOL

Open
problems

If Q′ has a universal object, we denote it by Q̃ISO+(D). In
general, however, Q′ may fail to have a universal object. We do
get a universal object in suitable subcategories by fixing a
‘volume form’...

Theorem

Let R be a positive, possibly unbounded, operator on H
commuting with D and consider the functional (defined on a
weakly dense domain) τR(x) = Tr(Rx). Then there is a

universal object (denoted by Q̃ISO+
R(D)) in the subcategory

of Q′ consisting of those (Q,∆,U), for which
(τR ⊗ id)(adU(·)) = τR(·)1Q.

Given such a choice of R, we shall call the spectral triple to be
R-twisted.
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The C ∗-subalgebra QISO+
R (D) of Q̃ISO

+

R (D) generated by
elements of the form
{< (ξ ⊗ 1), adU0(a)(η ⊗ 1) >, a ∈ A∞, ξ, η ∈ H}, where

U0 is the unitary representation of Q̃ISO+
R(D) on H and

< ·, · > denotes the Q̃ISO
+

R (D)-valued inner product of

the Hilbert module H⊗ Q̃ISO
+

R (D), will be called the
quantum group of orientation and (R-twisted) volume
preserving isometries. A similar C ∗-subalgebra of

Q̃ISO+(D), if it exists, will be denoted by QISO+(D).
However, QISO+

R (D) may not admit a C ∗ action for
general noncommutative manifolds (but does so for
classical manifolds and their Rieffel-deformations at least).
Under mild conditions QISOL ∼= QISO+

I (d + d∗). where
d + d∗ is the ‘Hodge Dirac operator’ on the space of all
(noncommutative) forms.
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Computational techniques

Bhowick, Goswami, Joardar: QISOL and QISO+
R of

deformed or cocycle-twisted spectral triples is isomorphic
with a similar deformed or twisted version of the QISOL or
QISO+

R of the original (undeformed) spectral triple.

So, quantum isometries of noncommutative examples
obtained from classical manifolds can be computed
provided the quantum isometry groups of classical
manifolds are known.

Bhowmick, Goswami, Skalski: The functors QISO+,
QISO+

R etc. commute with inductive limit under suitable
conditions, which facilitates computations of quantum
isometry groups for spectral triples on AF algebras.

Other computations include QISO of group algebras
(Banica, Skalski, Bhowmick, Soltan and others), free or
half-liberated models (Banica, Goswami and others) etc.
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QISO for spectral triples with real structures
(Goswami 2010)

A real structure for an odd spectral triple (A∞,H,D) is
given by a (possibly unbounded, invertible) closed
anti-linear operator J̃ on H such that
D := Dom(D) ⊆ Dom(J̃), J̃D ⊆ D, J̃ commutes with D
on D, and the antilinear isometry J obtained from the
polar decomposition of J̃ satisfies J2 = εI , JD = ε′DJ,
and for all x , y ∈ A∞, the commutators [x , JyJ−1] and
[JxJ−1, [D, y ]] are compact operators. Here, ε, ε′ are ±1,
obeying the sign-convention described, e.g. in “An
Introduction to Noncommutative Geometry”, by J. C.
Varilly (European Math. Soc., 2006).

For the even case, additional requirement is some
commutation relation of the form Jγ = ε′′γJ for some
ε′′ = ±1 between J and the grading operator γ.
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Let Q′real be the subcategory of Q′ of orientation preserving
quantum isometries consisting of those (Q,U) for which
following holds on D0 (the linear span of eigenvectors of D):
(J̃ ⊗ J̃Q) ◦ U = U ◦ J̃., where J̃Q(x) = x∗, for x in Q0

(canonical Hopf algebra of Q.

Theorem

The category Q′real admits a universal object, denoted by

Q̃ISOreal(D)

Denote by QISOreal(D) the C ∗ algebra generated by elements
of the form {< (ξ ⊗ 1), adU0(a)(η ⊗ 1) >, a ∈ A∞}, where U0

is the unitary representation of Q̃ISOreal(D) on H. As an

important example, Dabrowski et al computed Q̃ISOreal for the
finite part of the Connes-Chamseddine spectral triple for
standard model of NCG.
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Quantum isometry for metric spaces

In the next two slides, let us fix a compact metric space (X , d)
(without any extra geometric structure).

For any faithful C ∗ action β of a CQG S on C (X ), the
antipode, say κ, of S is bounded, so (id⊗ κ) ◦ β is a
well-defined and norm-bounded map on C (X ).

Define β to be ‘isometric’ in the metric space sense if
(idC ⊗ β)(d) = σ23 ◦ ((idC ⊗ κ) ◦ β ⊗ idC)(d), where σ23

denotes the flip of the second and third tensor copies.

For S = C (G ) for a group G , this definition indeed
coincides with the usual definition of isometry.

Theorem

If (X , d) is isometrically embeddable in some Rn (with
Euclidean metric) then there exists a universal CQG
QISOmetric(X , d) in the category of CQG’s acting isometrically
on X .
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Actually, the existence theorem extends to a bigger class:

Corollary

Let (X , d) be a compact metric space. Suppose also that there
are topological embedding f : X → Rn and a homeomorphism
ψ of R+ such that (ψ ◦ d)(x , y) = d0(f (x), f (y)) for all
x , y ∈ X , where we have denoted the Euclidean metric of Rn

by d0. Then the conclusion of the above theorem holds.

It is known that an arbitrary finite metric space satisfies the
condition of the above corollary with ψ(t) = tc for some c > 0.
Thus, our existence theorem does extend that of Banica for
finite spaces. Examples of metric spaces satisfying the
condition of the corollary also include the spheres Sn (geodesic
distance) for all n ≥ 1.
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Only classical symmetries for classical connected
spaces

Natural question: what are quantum isometries of a classical
manifold?

Any disconnected compact space with at least 4
components admits a natural faithful action by quantum
permutation group of 4 objects, which is a genuine CQG.
Explicit computations for spheres, tori, G/K for certain
homogeneuous spaces associated with compact connected
semisimple G etc gave QISO=ISO
Banica, de Commer and Bhowmick showed that many
known genuine CQG’s cannot act faithfully isometrically
on a connected compact manifold.
These led to the question: can there be a faithful action of
a genuine CQG on a compact connected space?
H. Huang came up with such compact connected metric
spaces X , but they were not smooth manifolds.
Finally, Das, Goswami, Joardar proved the following:
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Theorem

If a CQG Q has a faifthful isometric action on C (M) where M
is compact connected Riemannian manifold, then Q ∼= C (G )
for some subgroup G of the group of Riemannian isometries of
M. In particular, the quantum isometry group of M is
C (Iso(M)).

This leads us to conjecture that there cannot be a genuine
CQG acting smoothly (defined below) and faithfully on a
compact, connected, smooth manifold.

Definition

An action α of a CQG Q on C (M) (where M is a smooth
compact manifold) will be called smooth if it maps C∞(M) to
C∞(M,Q) and the span of α(C∞(M))(1⊗Q) is dense in
C∞(M,Q) in the natural Frechet topology.
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Physical implications of the conjecture

If true, it would mean the following in physical terms:

For a classical mechanical system with phase-space
modeled on a compact connected manifold, the
generalized notion of symmetries in terms of quantum
groups coincides with the conventional notion, i.e.
symmetries coming from group actions only.

All (quantum) symmetries of a physical model obtained by
suitable deformation of a classical model with connected
compact phase space, are indeed deformations of the
classical (group) symmetries of the original classical model.
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No quanutm symmetry for smooth actions?

There was an announcement of a proof of the smooth
no-go conjecture, but it contained a gap, leading to only
the no-go result for isometric actions so far.

However, We proved the conjecture at least for finite
dimensional CQG.

The conjecture will follow if we can prove the following:
any smooth CQG action on M is isomertric for some
choice of Riemannian metric. The wrong announcement
had a gap in the proof of this fact using an averaging.
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Algebraic no-go results

Etingof and Walton (2014) proved that, if a finite
dimensional, semisimple Hopf algebra inner faithfully
(same as what we call faithful) co-acts on a commutative
domain then the Hopf algebra must be commutative.

However, the proof of the above result depends crucially
on finite dimension and semisimplicity, so cannot be
generalized further.

The speaker and Etingof, Walton, Mandal proved recently
the following: given a commutative unital algebra A with
a finite dimensional generating subspace V which is
‘quadratically independent’, i.e. the natural map from the
symmetric tensor product S2(V ) to A is one-to-one and a
faithful co-action of a CQG Hopf algebra Q on A such
that V is left invariant, Q must be commutative, i.e.
classical.
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A recent result (not yet written up): given a smooth, real
or complex algebraic variety of co-dimension one (i.e.
hypersurface), there cannot be any genuine (non-classical)
CQG Hopf algebra which can have a linear and faithful
co-action on the corresponding coordinate algebra.
Without smoothness, there can be faithful co-action of
even finite dimensional CQG, e.g. C ∗(S3) (group algebra
of the permutation group of three elements) on the variety
{(x , y) : xy = 0}, given by Etingof and Walton.
On the other hand, there can be faithful, linear co-action
on k[x1, . . . , xn] of genuine (non-commutative as algebra)
Hopf algebras which are of noncompact type (Walton et
al).
Conjecture : there cannot be any genuine CQG Hopf
algebra co-acting faithfully on the coordinate algebra of
any smooth real or complex algebraic variety.
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Sketch of proof of no-go for QISO

Lemma

Key Lemma
Let W ⊂ RN have nonempty interior, α a faithful action of a
CQG Q on C (W ) which is affine, i.e. α leaves invariant
Sp{1,X1, . . . ,XN}, Xi ’s being the coordinate functions on W .
Then Q ∼= C (G ) for some group G .

A lift or (co)-representation of a smooth action α on Ω1(M) is
a continuous, co-associative C-linear map Γ from Ω1(M) to
Ω1(M,Q) s.t. Γ(df ) = (d ⊗ id)(α(f )),
Γ(ξf ) = Γ(ξ)α(f ) = α(f )Γ(ξ) ∀ ξ ∈ Ω1(M), f ∈ C∞(M).
Unlike group actions, Hopf algebra co-action may not have
such a lift: e.g. the co-action given by α(x) = x ⊗ a + 1⊗ b on
R[x ] of the quantum ax + b Hopf algebra
< a, a−1, b| aa−1 = a−1a = 1, ab = q2ba > (coproduct
∆(a) = a⊗ a,∆(b) = a⊗ b + b ⊗ 1,) is not liftable.
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Theorem

Given a smooth action α of Q on a compact manifold M the
following are equivalent:
(i) α admits a lift.
(ii) α is isometric w.r.t. some Riemannian structure on M.
(iii) ∀x ∈ M, the algebra Qx generated by
{(χ⊗ id)(α(f )), α(g), f , g ∈ C∞(M), χ ∈ χ(M)} is
commutative, where χ(M) is the set of all smooth vector fields.

starting with an isometric action α on M, we can further
have Γ(k) := dα(k) on Λk(M) (module of k-foms) which is
a co-representation and equivariant, i.e.
<< Γ(ω), Γ(η) >>C∞(M,Q)= α(<< ω, η >>C∞(M)).
We can view Γ as a co-representation on χ(M) as well,
using the identification of χ(M) and Ω1(M) coming from
the Riemannian inner product.
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Using isometry, we show that the Levi-civita connection is
‘preserved’ in the following sense:
Γ(∇X (Y )) = ∇̃Γ(X )(Γ(Y )). Here, ∇ is the covariant
derivative operator corresponding to the Levi-civita
connection and ∇̃ is the extension of ∇ on (topological
tensor product) χ(M)⊗Q satisfying
∇̃X1⊗q1(X2 ⊗ q2) := ∇X1(X2)⊗ q1q2.

This implies α(φΓk
ij) ∈ Qx , where φ is any smooth

function supported in the domain of some coordinate chart
for which the Christoffel symbols are denoted by Γk

ij .

With little more calculations, this further implies a second
order commutativity: for each m ∈ M and local
coordinates (x1, . . . , xn) around m, the algebra generated

by {α(f )(m), ∂
∂xi

(α(g))(m), ∂2

∂xi∂xj
(α(h))(m) : f , g , h ∈

C∞(M)} is commutative.
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Step 3: Lifting it further

Commutativity of Qx further allows us to prove that Γ
naturally induces a ∗-homomorphic action α̃ (say) on
C∞(T (OM)), where T (OM) is the total space of the
orthonormal frame bundle on M, identifying C∞(T (OM))
with suitable completion of the symmetric algebra of the
C∞(M)-module Ω1(M).
The second order commutativity of α implies first order
commutativity for the lift α̃, hence we get a Riemannian
structure on E for which α̃ is isometric.
As E is parallelizable, hence has an embedding in some
Rm with trivial normal bundle (w.r.t. the Riemannian
metric chosen above) say N(E ), lift α̃ as an isometric
action Φ on some suitable ε-neighbourhood W of E in the
total space N ≡ Rm of N(E ).
Finally, we prove Φ to be affine, then by the key lemma
the proof is complete.
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Step 4: Proof of affine-ness of Φ

Let Dk
i = ∂

∂yi
Φ(yk), Dk

ij = ∂2

∂yi∂yj
Φ(yk), where y1, . . . , ym

are the standard coordinates of Rm. As Int(W ) is open
connected, it suffices to show that Dk

ij = 0 for all k , i , j .

As isometric actions satisfy second order commutativity,
Dk
ij and D l

m commute.

By the isometry condition of Φ:

N∑
l=1

D l
i D

l
j = δij1. (1)
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Applying ∂
∂yk

to equation (1), and using the commutativity

of D l
jk and D l

i ’s

N∑
l=1

(D l
ikD l

j + D l
jkD l

i ) = 0. (2)

An2×n ≡ ((A(ij),k)), with A(ij),k = Dk
ij ,

Bn×n = ((Bij = D i
j )), C := AB.

From (2)
C(ik)j + C(jk)i = 0. (3)

As C(ij)k = C(ji)k for all i , j , k, equation (3) gives

C(ik)j = C(ki)j = −C(ji)k = −C(ij)k = C(kj)i = C(jk)i .

So again by equation (3), C(ik)j = 0 for all i , j , k i.e.
C = 0, hence A = 0 as B is unitary.
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Noncommutative Tori (Bhowmick-Goswami 2009)

Consider the noncommutative two-torus Aθ (θ irrational)
generated by two unitaries U,V satisfying UV = e2πiθVU, and
the standard spectral triple on it described by Connes. Here,
A∞ is the unital ∗-algebra spanned by U,V ;
H = L2(τ)⊕ L2(τ) (where τ is the unique faithful trace on Aθ)

and D is given by D =

(
0 d1 + id2

d1 − id2 0

)
, where d1 and

d2 are closed unbounded linear maps on L2(τ) given by
d1(UmV n) = mUmV n, d2(UmV n) = nUmV n. ‘Laplacian’ L
given by L(UmV n) = −(m2 + n2)UmV n.

Theorem

(i) QISOL = ⊕8
k=1C ∗(Uk1,Uk2) (as a C ∗ algebra), where for

odd k, Uk1,Uk2 are the two commuting unitary generators of
C (T2), and for even k, Uk1Uk2 = exp(4πiθ)Uk2Uk1,
(ii) QISO+(D) ∼= C (T2).
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SUµ(2) (Bhowmick-Goswami 2009)

The CQG SUµ(2) µ ∈ [−1, 1] is the universal unital C ∗

algebra generated by α, γ satisfying: α∗α + γ∗γ = 1,
αα∗ + µ2γγ∗ = 1, γγ∗ = γ∗γ, µγα = αγ, µγ∗α = αγ∗.,
and the coproduct given by : ∆(α) = α⊗ α− µγ∗ ⊗ γ,
∆(γ) = γ ⊗ α + α∗ ⊗ γ.
On the Hilbert space L2(h) (h Haar state),
Chakraborty-Pal described a natural spectral triple with

the D given by D(e
(n)
ij ) = (2n + 1)e

(n)
ij if n 6= i , and

−(2n + 1)e
(n)
ij for n = i , where e

(n)
ij are normalised matrix

elements of the 2n + 1 dimensional irreducible
representation, n being half-integers.

QISO+(D) ∼= Uµ(2) = C ∗{uij , i , j =
1, 2, | ((uij)) unitary, u11u12 = µu12u11, u11u21 =
µu21u11, u12u22 = µu22u12, u21u22 = µu22u21, u12u21 =
u21u12, u11u22 − u22u11 = (µ− µ−1)u12u21}.
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Podles spheres (Bhowmick-Goswami 2010)

The Podles sphere S2
µ,c is the universal C ∗ algebra

generated by A,B satisfying AB = µ−2BA,A = A∗ =
B∗B + A2 − cI = µ−2BB∗ + µ2A2 − cµ−2I .

S2
µ,c can also be identified as a suitable C ∗ subalgebra of

SUµ(2) and leaves invariant the subspace

K = Span{e(l)

± 1
2
, m

: l = 1
2 ,

3
2 , ..., m = −l ,−l + 1, ...l} of

L2(SUµ(2), h).

R-twisted spectral triple given by:

D(e
(l)

± 1
2
, m

) = (c1l + c2)e
(l)

∓ 1
2
, m

, (where c1, c2 ∈ R, c1 6= 0),

R(e
(n)

± 1
2
, i

) = µ−2ie
(n)

± 1
2
, i
.

QISO+
R (D) = SOµ(3) ≡ C ∗

(
e

(1)
ij , i , j = −1, 0, 1

)
.
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Free and half liberated spheres (Banica-Goswami )

Free sphere: A+
n = C ∗

(
x1, . . . , xn

∣∣∣xi = x∗i ,
∑

x2
i = 1

)
.

It has a faithful trace, and in the corresponding GNS space
we can construct a spectral triple for which the quantum
isometry group is the free orthogonal group

O+
n = C ∗

(
u11, . . . , unn

∣∣∣uij = u∗ij , u
t = u−1

)
.

Similarly, consider the half-liberated sphere:

A∗n = C ∗
(

x1, . . . , xn

∣∣∣xi = x∗i , xixjxk = xkxjxi ,
∑

x2
i = 1

)
.

Again, for a natural spectral triple on this, we get the
following the quantum isometry group: O∗n =

C ∗
(

u11, . . . , unn

∣∣∣uij = u∗ij , uijuklust = ustukluij , u
t = u−1

)
.
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Sketch of proof for existence of QISOL

Let us give some ideas of a typical construction of quantum
isometry groups. Consider the approach based on Laplacian.

Let {eij , j = 1, . . . , di ; i = 1, 2, . . .} be the complete list of
eigenvectors of the Laplacian L, {eij , j = 1, . . . , di} being
the (orthonormal) basis for i-th eigenspace. recall that
these are actually elements of A∞, and let A∞0 be the
span of these elements which is norm-dense in A by
assumption

We have to use the formalism of isometric quantum
family. Call (S, α) be such a family if S is a unital C ∗

algebra and α : A → A⊗ S is a ∗-homomorphism which
commutes with L, ie isometric, and also the linear span of
α(A)(1⊗ S) is norm dense in A⊗ S.

We first claim that the ‘connectedness assumption’ that
ker(L) = C1 implies α preserves the volume form τ .
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Proof of claim: for any state φ on S, consider the linear
map C := αφ = (id⊗ φ) ◦ α on A∞0 which commutes with
the self-adjoint operator L, so leaves invariant each
eigenspace, in particular maps the vector 1 to itself, and its
orthocomplement (which is the direct sum of eigenspaces
of L) to itself too. For a ∈ A∞0 , < 1, (a− τ(a)1) >= 0, so
τ(C (a))− τ(a) =< 1,C (a− τ(a)1) >= 0.
Thus, α extends to a unitary operator from
H⊗ S = L2(A, τ)⊗ S to , which maps eij ⊗ 1 to say∑

k eik ⊗ q
(i)
kj , and tracial property of τ implies that (q

(i)
kj )

give a copy of Au(Idi ). This identifies S as a quotient of
∗iAu(Idi ), say w.r.t. the ideal IS .
Now consider all the ideals of the form IS as above and
take their intersection, say I. One can prove that
(∗iAu(Idi )) /I is the universal quantum family of isometries
and is also a CQG, which is indeed the desired QISOL.
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Open problems to be investigated

Proving some general results about the structure and
representation theory of such quantum isometry groups.

Extending the formulation of quantum isometry groups to
the set-up of possibly noncompact manifolds (both
classical and noncommutative), where one has to work in
the category of locally compact quantum groups.

Formulating a definition (and proving existence) of a
quantum group of isometry for compact metric spaces ,
and more generally, for quantum metric spaces in the
sense of Rieffel. Some wrok in this direction is done by
Sabbe and Quaegebeur recently.
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QISO of deformed noncommutative manifolds
(Bhowmick-Goswami 2009)

Recall Rieffel deformation of C ∗ algebras and Rieffel-Wang
deformation of CQG. we give a general scheme for computing

quantum isometry groups by proving that Q̃ISO+
R of a

deformed noncommutative manifold coincides with (under
reasonable assumptions) a similar (Rieffel-Wang) deformation

of the Q̃ISO+
R of the original manifold.

Let (A,Tn, β) be a C ∗ dynamical system, A∞ be the algebra
of smooth ( C∞ ) elements for the action β., and D be a
self-adjoint operator on H such that (A∞,H,D) is an
R-twisted, θ-summable spectral triple of compact type.
Assume that there exists a compact abelian group T̃n with a
covering map γ : T̃n → Tn, and a strongly continuous unitary
representation Vg̃ of T̃n on H such that

Vg̃D = DVg̃ , Vg̃aVg̃
−1 = βg (a), g = γ(g̃).
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Theorem

(i) For each skew symmetric n × n real matrix J, there is a
natural representation of the Rieffel-deformed C ∗ algebra AJ in
H, and (A∞J = (A∞)J ,H,D) is an R-twisted spctral triple of
compact type.
(ii) If QISO+

R (A∞J ,H,D) and (QISO+
R (A∞,H,D))

J̃
have C ∗

actions on A and AJ respectively, where J̃ = J⊕ (−J), we have

QISO+
R (A∞J ,H,D) ∼= (QISO+

R (A∞,H,D))
J̃
.

(iii) A similar conclusion holds for QISO+(A∞), QISO+(A∞J )
provided they exist.
(iv) In particular, for deformations of classical spectral triples,
the C ∗ action hypothesis of (ii) or (iii) hold, and hence the
above conclusions hold too.
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Fix a unital commutative k-algebra A with a finite-dimensional
generating subspace V that is quadratically independent. Let
Q be a Hopf algebra that coacts on A inner-faithfully leaving
V invariant.

Lemma

Suppose that V is an inner-faithful finite-dimensional comodule
over a Hopf algebra Q, and assume that the decomposition
V ⊗ V = S2V ⊕ ∧2V is preserved by this coaction. Here,
∧2V := (V ⊗ V )/(v ⊗ w + w ⊗ v)v ,w∈V . Then, Q is
commutative.
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Proof:
Let the coaction α be given by α(v) = T (v ⊗ 1), for
T ∈ End(V )⊗Q. Consider the natural Q-coaction on V ⊗ V
defined by the matrix T 13T 23 ∈ End(V ⊗ V )⊗Q. Here,
T 13 =

∑
i ,j Eij ⊗ Id ⊗ tij , and T 23 =

∑
i ,j Id ⊗ Eij ⊗ tij , for the

elementary matrices Eij . The hypotheses imply that T 13T 23

lies in (End(S2V )⊗Q)⊕ (End(∧2V )⊗Q), hence it
commutes with the permutation that flips the two copies of V .
Thus, T 13T 23 = T 23T 13, so matrix elements of T commute
with each other. Since matrix elements of T generate Q (by
the inner-faithfulness of V ), we obtain that Q is commutative.
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Theorem

If the co-action of Q preserves a nondegenerate bilinear form B
on V , then Q is commutative.

Proof:
The form B defines an invariant nondegenerate form B2 on
V ⊗ V given by B2(a⊗ b, c ⊗ d) = B(a, d)B(b, c). Now the
co-action of Q on A is induced from the natural coaction of Q
on V ⊗ V , and by hypothesis of quadratic independence, ∧2V
is Q-invariant. Thus, the orthogonal complement to ∧2V in
V ⊗ V under the form B2, i.e. S2V is also invariant under the
coaction of Q on V ⊗ V . The previous lemma now proves the
theorem.
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Adapting this proof to the case of a hermitian inner product we
can get a similar result for Hopf ∗-algebra preserving an inner
product. Moreover, as every finite dimensional co-module of a
CQG Hopf algebra can be made into a unitary co-representation
by choosing a suitable inner product, we conclude that

Theorem

if a CQG Hopf algebra co-acts on A, inner faithfully and
leaving V invariant, then Q must be commutative.
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